- 18 1. Une réaction est d'ordre 1 par rapport à un réactif A si la vitesse volumique d'apparition des produits ou la vitesse volumique de disparition du réactif A sont proportionnelles à la concentration en quantité de matière du réactif A.
- 2. a. Cette réaction est d'ordre 1. On peut donc écrire :

$$v(OCN^-) = k \cdot [ur\acute{e}]$$

 $v(NH_4^+) = k' \cdot [ur\acute{e}]$
 $v(ur\acute{e}) = k'' \cdot [ur\acute{e}]$

avec k, k' et k" des coefficients de proportionnalité.

b. Graphique (A):

Il est faux car une vitesse volumique de disparition est positive.

Graphique 13:

Il est juste, la vitesse volumique d'apparition de OCN⁻ est bien proportionnelle à la concentration de l'urée.

Graphique (G):

Au cours de la réaction, la concentration de l'urée diminue. Or, la vitesse volumique d'apparition du NH_4^+ est proportionnelle à la concentration en urée, donc la vitesse volumique d'apparition du NH_4^+ diminue au cours du temps. Cette représentation est donc fausse.

Graphique D:

OCN⁻ étant un produit, sa concentration augmente au cours du temps. Ce graphique est donc faux.

c. Le graphique \triangle pourrait représenter l'opposé de la vitesse de disparition de l'urée en fonction de la concentration de l'urée : $-v_{\text{urée}}([\text{urée}])$.

Le graphique \bigcirc pourrait représenter la concentration de NH_4^+ en fonction du temps : $[NH_4^+](t)$.

Le graphique D pourrait représenter la concentration de l'urée en fonction du temps : [urée](t).