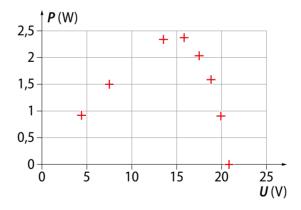

29 1.


2.

3. a. On calcule $P = U \cdot I$ pour chaque valeur de U:

U (V)	20,8	19,9	18,8	17,5	15,8	13,5	7,5	4,4	0,061
P (W)	0	0,906	1,58	2,03	2,37	2,34	1,50	0,924	0,014

On trace P = f(U).

On lit la valeur maximale : $P_{\text{\'electrique}} = 2,4 \text{ W}.$

b.
$$\eta = \frac{P_{\text{\'electrique}}}{P_{\text{lumineuse}}} \times 100$$

Or $P_{\text{lumineuse}} = E \cdot S$, où E est l'éclairement.

$$\eta = \frac{2.4}{97 \times 0.25} \times 100 = 10 \%$$

c. Un rendement de 10 % signifie que 10 % de l'énergie lumineuse est convertie en énergie électrique et que 90 % de l'énergie lumineuse est « perdue » par réflexion ou convertie sous forme d'énergie thermique. Ce rendement n'est pas très élevé mais correspond au rendement moyen d'une cellule photovoltaïque.