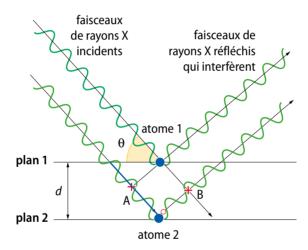
29 Démarche experte

Les interférences constructives sont recherchées telles que $\delta = k \cdot \lambda = 2d \cdot \sin \theta$. La distance doit être la plus petite entre deux plans voisins successifs, soit k = 1.

On peut isoler
$$d = \frac{\lambda}{2 \sin \theta}$$
.


AN:
$$d = \frac{145}{2 \times \sin 11.5^{\circ}} = 364$$
 pm (il n'est pas nécessaire de convertir les picomètres en

mètres, on obtiendra la distance interplans directement en picomètres et on conservera 3 chiffres significatifs comme dans les données de l'énoncé).

La distance minimale entre deux plans est donc 364 pm.

Démarche avancée

1. La différence de chemin optique vient de la différence de parcours des deux ondes incidentes et réfléchies.

Elle correspond à deux fois la longueur du segment bleu, qui se calcule en utilisant la formule du cosinus :

$$\cos\left(\frac{\pi}{2}-\theta\right) = \frac{\cot \theta}{\text{hypotenuse}} = \frac{d}{\delta/2}$$
. Or $\cos\left(\frac{\pi}{2}-\theta\right) = \sin\theta$, donc $\delta = 2d \cdot \sin\theta$.

2. Les interférences constructives se produisent quand $\delta = k \cdot \lambda$.

Les interférences destructives se produisent quand $\delta = (2k + 1) \cdot \frac{\lambda}{2}$.

3. Pour une différence de chemin optique minimale, et pour des interférences constructives, il faut prendre k = 1:

$$\delta = \lambda = 2d \cdot \sin \theta$$
, ce qui permet d'isoler $d = \frac{\lambda}{2 \sin \theta}$.

AN:
$$d = \frac{145}{2 \sin 11.5^{\circ}} = 364 \text{ pm}$$
 (ne pas convertir les picomètres en mètres, on obtiendra

la distance interplans directement en picomètres et on conservera 3 chiffres significatifs comme dans les données de l'énoncé).

La distance minimale entre deux plans est donc 364 pm.